Publications

Listing of key and recent publications of the Martin Laboratory

 

Development of the corticospinal tract

Activity-dependence

Martin JH, Kably, B, Hacking H Activity-dependent development of cortical axon terminations in the spinal cord and brain stem. Exp Brain Res (1999) 125:184-199.

Meng Z, Li Q, Martin, JH The transition from development to motor function in the corticospinal system. J Neuroscience (2004) 24: 605-614.

Martin, JH, Choy M, Pullman S, Meng Z. Corticospinal development depends on motor experience. J Neuroscience (2004) 24:2122-2132.

Salimi I, Martin JH Rescuing transient corticospinal axons and promoting growth with pyramidal tract stimulation in kittens. J Neuroscience (2004) 24:4952-4961

Friel K, Martin JH. Rebalancing corticospinal activity promotes recovery of motor skill and anatomical integrity after inactivation during a critical period. J. Neuroscience (2007) 27:11083-11090.

Salimi I, Friel K, Martin JH. Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade. J Neuroscience (2008) 28:7426-7434.

Friel KM, Chakrabarty S, Kuo H-C, Martin JH. Using motor behavior during an early critical period to restore skilled limb movement after damage to the corticospinal motor system during development. J. Neuroscience (2012) 32:9265-9276.

PlexinA1 & EphA4 CST guidance

Beg AA, Sommer JE, Martin JH, Scheiffele P. Alpha2-chimaerin is an essential EphA4 adapter in the assembly of neuronal locomotor circuits. Neuron (2007) 55:768-778.

Paixão S, Balijepalli A, Serradj N, Martin JH, Klein R. EphrinB3/EphA4-mediated guidance of ascending and descending spinal tracts. Neuron (2013) 80: 1407 – 1420.

F1000 recommendation

Serradj N, Paixão S, Sobocki T, Feinberg M, Klein R, Kullander K, Martin JH. EphA4-mediated ipsilateral corticospinal tract misprojections are necessary for bilateral voluntary movements but not bilateral stereotypic locomotion. J Neuroscience (2014) 34: 5211-5221.

Serradj N, Martin JH. Motor experience reprograms a genetically-altered corticospinal motor circuit. PLoS ONE (2016) 11(9): e0163775. doi:10.1371/journal.pone.0163775

Gu Z, Serradj N, Ueno M, Liang M, Li J, Baccei ML, Martin JH, Yoshida Y. Skilled movements require non-apoptotic Bax/Bak pathway-mediated corticospinal circuit reorganization. Neuron (2017):94(3)626–641.

F1000 recommendation

Gu Z, Kalambogias J, Ueno M, Kawasawa YI, Han W, Xhen L, Ueno M, Wijeratne S, Blatz E, Kumanogoh A, Weinrauch MT, Rasin MR, Martin JH, Yoshida Y. Control of species-dependent cortico-motoneuronal connections underlying manual dexterity. Science (2017): 357:400-404.

F1000 recommendation

Gu Z, Koppel N, Kalamboglas J, Alexandrou G, Li J, Craig C, Simon DJ, Tessier-Lavigne M, Baccei ML, Martin JH, Yoshida Y (2020) Semaphorin-Mediated Corticospinal Axon Elimination Depends on the Activity-Induced Bax/Bak-Caspase Pathway. J Neuroscience 40:5402-5412.

Activity-dependent co-development of the corticospinal and rubrospinal systems and spinal motor circuits

Chakrabarty S, Shulman, B, Martin JH. Activity-dependent co-development of the corticospinal system and target interneurons in the cervical spinal cord. J Neuroscience (2009) 29:8816-8827.

Chakrabarty S, B, Martin JH. Postnatal development of segmental switch enables corticospinal tract transmission to spinal forelimb motor circuits. J Neuroscience (2010) 30:2277-2288.

Williams P, Kim S, Martin JH. Postnatal maturation of the red nucleus motor map depends on rubrospinal connections with forelimb motor pools. J Neuroscience (2014) 34:4432-4441.

Williams P, Martin JH. Motor cortex activity organizes the developing rubrospinal system. J Neuroscience (2015) 35:13363-13374.

Cerebral palsy: surgical intervention to overcome sensory-motor imbalance

Wolter S, Spies C, Martin JH, Schulz M, Sarpong-Bengelsdorf A, Unger J, Thomale UW, Michael T, Murphy JF, Haberl H (2020) Frequency distribution in intraoperative stimulation-evoked EMG responses during selective dorsal rhizotomy in children with cerebral palsy-part 1: clinical setting and neurophysiological procedure. Childs Nerv Syst 36:1945-1954

Wolter S, Haberl H, Spies C, Sargut TA, Martin JH, Tafelski S, van Riesen A, Kuchler I, Wegner B, Scholtz K, Thomale UW, Michael T, Murphy JF, Schulz M (2020) Frequency distribution in intraoperative stimulation-evoked EMG responses during selective dorsal rhizotomy in children with cerebral palsy-part 2: gender differences and left-biased asymmetry. Childs Nerv Syst 36:1955-1965

 

Repair of the mature CST

Activity-dependent repair of adult corticospinal motor system

Brus M, Carmel JB, Chakrabarty S, Martin JH. (2007) Electrical Stimulation of Spared Corticospinal Axons Augments Connections with Ipsilateral Spinal Motor Circuits After Injury. J. Neuroscience 27:13793-13801.

Carmel JB, Berrol LJ, Brus-Ramer M, Martin JH. (2010) Chronic Electrical Stimulation of the Intact Corticospinal System After Unilateral Injury Restores Skilled Locomotor Control and Promotes Spinal Axon Outgrowth. J. Neuroscience 30:10918-10926.

Jiang Y, Zaaimi B, Martin JH. (2016) Competition with primary sensory afferents drives remodeling of corticospinal axons in mature spinal motor circuits. J Neuroscience 36:193-203.

Featured article highlight: “Competitive Interactions Shape Mature Spinal Circuits

F1000 recommendation

Zareen N, Dodson S, Armada K, Awad R, Sultana N, Hara E, Alexander H, Martin JH. (2018) Stimulation-dependent remodeling of corticospinal tract axons and connections require reactivation of growth-promoting developmental signaling pathways. Exp Neurology 307:133-144.

 

Intersectional neuromodulation to promote recovery after SCI

Song W, Amer Z, Ryan D, Martin JH. (2016) Effects of theta burst motor cortex stimulation can be potentiated by spinal cathodal DC stimulation to promote corticospinal system plasticity and motor recovery after injury. Exp Neurology 277:46-57.

Song W, Martin JH. (2017) Spinal cord direct current stimulation differentially modulates neuronal activity in the dorsal and ventral spinal cord. J. Neurophysiology 117:1143-1155.

Zareen N, Shinozaki M, Ryan D, Alexander H, Amer A, Truong D, Khada N, Sarkar A, Naeem S, Bikson M, Martin, JH. (2017) Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury. Exp Neurology 297:179-189.

Sharif H, Alexander H, Azam A, Martin JH. (2021) Dual Motor Cortex and Spinal Cord Neuromodulation Improves Rehabilitation Efficacy and Restores Skilled Locomotor Function in a Rat Cervical Contusion Injury Model. Exp Neurology 341:113715

Mechanisms of motor impairment after spinal injury

Jiang Y, Zaaimi B, Martin JH. (2016) Competition with primary sensory afferents drives remodeling of corticospinal axons in mature spinal motor circuits. J Neuroscience 36:193-203.

Featured article highlight: “Competitive Interactions Shape Mature Spinal Circuits

Jiang Y, Sarkar A, Amer A, Martin JH. (2018) Transneuronal down-regulation of the premotor cholinergic system after corticospinal tract loss. J Neurosci 38(39):8329-8344

Jiang Y, Armada K, Martin JH. (2019) Contribution of loss of activity and microglial activation to corticospinal tract and proprioceptive afferent sprouting in spinal circuits after corticospinal system lesion. Expt neurology 320:112962.

 

Me

Mechanisms of corticospinal system neuromodulation

Amer A, Xia J Smith M, Martin JH. (2021) Spinal cord representation of motor cortex plasticity reflects corticospinal tract LTP. Proc. National Academy Sciences 118 (52): e2113192118.

Song WG, Martin JH. (2022) Trans-spinal direct current stimulation induces PIC-like motor unit responses via activation of Ca2+ channels. Frontier of Neuroscience 16: 856948. https://doi.org/10.3389/fnins.2022.856948

Williams PTJA, Truong DQ, Bikson M, Martin JH. (2022) Selective augmentation of corticospinal motor drive with transcutaneous direct current spinal stimulation in the cat. Brain Stimulation 15(3):624-634.

Amer A and Martin JH. (2021) Repeated Motor Cortex Late-LTP Produces Persistent Strengthening of Corticospinal Motor Output and Durable Spinal Cord Structural Changes. Brain Stimulation (accepted)

Selected review articles

Martin JH (2005) Corticospinal system: from development to motor control. The Neuroscientist 11:161-173, 2005.

Williams PTJA, Jiang Y, Martin JH. (2017) Motor System Plasticity After Unilateral Injury of the Young Brain: Effects of Neural Activity and Injury. Dev Med Child Neurol 59(12):1224-1229

Courtine G, Bunge MB, Fawcett JW, Grossman RG, Kaas JH, Lemon R, Maier I, Martin J, Nudo RJ, Ramon-Cueto A, Rouiller EM, Schnell L, Wannier T, Schwab ME, Edgerton VR. (2007) Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans? Nat Med 13:561-566

Martin JH. (2016) Harnessing neural activity to promote repair of the damaged corticospinal system after spinal cord injury. Neural Regen Res 11(9):1389-1391.

Jack AS, Hurd C, Martin JH, Fouad K (2020) Electrical Stimulation as a Tool to Promote Plasticity of the Injured Spinal Cord. J Neurotrauma 37:1933-1953.

Tosolini A, Mentis GZ, Martin JH. (2021) Editorial: Dysfunction and Repair of Neural Circuits for Motor Control. Front. Mol. Neurosci., 22 March 2021 https://doi.org/10.3389/fnmol.2021.669824

Martin JH. (2022) Neuroplasticity of Spinal Cord Injury and Repair. In: Handbook of Clinical Neurology, Vol. 184 (3rd series). Neuroplasticity: From Bench to Bedside. A Quartarone, MF Ghilardi, F Boller (Eds.). Elsevier.

chanisms of corticospinal system neuromodulation

Amer A, Xia J Smith M, Martin JH. (2021) Spinal cord representation of motor cortex plasticity reflects corticospinal tract LTP. Proc. National Academy Sciences 118 (52): e2113192118.

Song WG, Martin JH. (2022) Trans-spinal direct current stimulation induces PIC-like motor unit responses via activation of Ca2+ channels. Frontier of Neuroscience 16: 856948. https://doi.org/10.3389/fnins.2022.856948

Williams PTJA, Truong DQ, Bikson M, Martin JH. (2022) Selective augmentation of corticospinal motor drive with transcutaneous direct current spinal stimulation in the cat. Brain Stimulation 15(3):624-634.

Amer A and Martin JH. (2021) Repeated Motor Cortex Late-LTP Produces Persistent Strengthening of Corticospinal Motor Output and Durable Spinal Cord Structural Changes. Brain Stimulation (accepted)

Selected review articles

Martin JH (2005) Corticospinal system: from development to motor control. The Neuroscientist 11:161-173, 2005.

Williams PTJA, Jiang Y, Martin JH. (2017) Motor System Plasticity After Unilateral Injury of the Young Brain: Effects of Neural Activity and Injury. Dev Med Child Neurol 59(12):1224-1229

Courtine G, Bunge MB, Fawcett JW, Grossman RG, Kaas JH, Lemon R, Maier I, Martin J, Nudo RJ, Ramon-Cueto A, Rouiller EM, Schnell L, Wannier T, Schwab ME, Edgerton VR. (2007) Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans? Nat Med 13:561-566

Martin JH. (2016) Harnessing neural activity to promote repair of the damaged corticospinal system after spinal cord injury. Neural Regen Res 11(9):1389-1391.

Jack AS, Hurd C, Martin JH, Fouad K (2020) Electrical Stimulation as a Tool to Promote Plasticity of the Injured Spinal Cord. J Neurotrauma 37:1933-1953.

Tosolini A, Mentis GZ, Martin JH. (2021) Editorial: Dysfunction and Repair of Neural Circuits for Motor Control. Front. Mol. Neurosci., 22 March 2021 | https://doi.org/10.3389/fnmol.2021.669824

Martin JH. (2022) Neuroplasticity of Spinal Cord Injury and Repair. In: Handbook of Clinical Neurology, Vol. 184 (3rd series). Neuroplasticity: From Bench to Bedside. A Quartarone, MF Ghilardi, F Boller (Eds.). Elsevier.